EconPapers    
Economics at your fingertips  
 

Exponential smoothing with covariates applied to electricity demand forecast

José D. Bermúdez

European Journal of Industrial Engineering, 2013, vol. 7, issue 3, 333-349

Abstract: Exponential smoothing methods are widely used as forecasting techniques in industry and business. Their usual formulation, however, does not allow covariates to be used for introducing extra information into the forecasting process. In this paper, we analyse an extension of the exponential smoothing formulation that allows the use of covariates and the joint estimation of all the unknowns in the model, which improves the forecasting results. The whole procedure is detailed with a real example on forecasting the daily demand for electricity in Spain. The time series of daily electricity demand contains two seasonal patterns: here the within-week seasonal cycle is modelled as usual in exponential smoothing, while the within-year cycle is modelled using covariates, specifically two harmonic explanatory variables. Calendar effects, such as national and local holidays and vacation periods, are also introduced using covariates. [Received 28 September 2010; Revised 6 March 2011, 2 October 2011; Accepted 16 October 2011]

Keywords: covariates; dynamic linear modelling; electricity demand; electricity forecasting; energy forecasting; exponential smoothing; forecasting practice; time series; Spain; calendar effects. (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=54134 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:eujine:v:7:y:2013:i:3:p:333-349

Access Statistics for this article

More articles in European Journal of Industrial Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:eujine:v:7:y:2013:i:3:p:333-349