EconPapers    
Economics at your fingertips  
 

Data mining model adjustment control charts for cascade processes

Seoung Bum Kim, Weerawat Jitpitaklert, Victoria C.P. Chen, Jinpyo Lee and Sun-Kyoung Park

European Journal of Industrial Engineering, 2013, vol. 7, issue 4, 442-455

Abstract: Control charts have been widely recognised as important tools in system monitoring of abnormal behaviour and quality improvement. Traditional control charts have a major assumption that successive observations are uncorrelated and normally distributed. When this assumption is violated, the traditional control charts do not perform well, but instead show increased false alarm rates. In this study, we propose a data mining model adjustment control chart to address autocorrelation problems for cascade processes. The basic idea of the proposed control chart is to monitor the residuals obtained by data mining models. The data mining models used in this study include support vector regression and artificial neural networks. A simulation study was conducted to evaluate the performance of the proposed control chart and compare it with the standard regression adjustment control chart and the observations-based control chart in terms of average run length performance. The results showed that the proposed data mining model adjustment control charts yielded better performance than the two other methods considered in this study. [Received 8 December 2010; Revised 19 June 2011; Revised 9 September 2011; Accepted 29 November 2011]

Keywords: autocorrelated processes; cascade processes; data mining; model-based control charts; statistical process control; SPC; model adjustment; support vector regression; artificial neural networks; ANNs; simulation. (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=55017 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:eujine:v:7:y:2013:i:4:p:442-455

Access Statistics for this article

More articles in European Journal of Industrial Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:eujine:v:7:y:2013:i:4:p:442-455