Knowledge augmentation via incremental clustering: new technology for effective knowledge management
Preeti Mulay and
Parag A. Kulkarni
International Journal of Business Information Systems, 2013, vol. 12, issue 1, 68-87
Abstract:
Learning paradigm is associated with the study of how computers and natural systems such as humans learn in the presence of both labelled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled or in the supervised paradigm (e.g., classification, regression) where all the data are labelled. 'Incremental learning' is an approach to deal with classification task or clustering when datasets are too large and when new information can arrive at any time, dynamically. We propose a new incremental clustering algorithm based on closeness, an efficient and scalable approach which updates cluster and learn new information effectually. Confusion matrix is implemented to validate the results given by proposed system as compared to published results. The proposed systems achieves knowledge augmentation, incremental learning via incremental clustering without compromising quality of data and saving computing time and complexity.
Keywords: incremental learning; incremental clustering; knowledge augmentation; knowledge management; clustering algorithms. (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=50660 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbisy:v:12:y:2013:i:1:p:68-87
Access Statistics for this article
More articles in International Journal of Business Information Systems from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().