EconPapers    
Economics at your fingertips  
 

Evaluation and performance analysis of classification techniques for thyroid detection

Rekha Pal, Tanvi Anand and Sanjay Kumar Dubey

International Journal of Business Information Systems, 2018, vol. 28, issue 2, 163-177

Abstract: Thyroid is one of the most common disease found in people nowadays which occur due to disorder of thyroid gland that include hypothyroidism (inactive thyroid gland) and hyperthyroidism (hyperactive thyroid gland) that can take place at any age and in either sex. Therefore their prior diagnosis and detection is very crucial and helpful for the betterment of human life. Large amount of complex data is collected by the healthcare sector in order to identify hidden patterns for effective identification, detection and decision making. Data mining has become a current trend for achieving effective diagnostic result from massive dataset by classifying applicable and unique patterns in data. The aim of the paper is to present an extensive analysis of different classification techniques viz. naive Bayes, SVM, and K-nearest neighbour (K-NN) on the basis of dimensionality reduction for detection of thyroid disease. Results are provided to select best thyroid disease detection technique. The analysis reflected that K-NN is performing better than other classifier on the basis of various parameters. This analysis will help to identify the best algorithm for such diseases and give better preventive options in advance.

Keywords: classification techniques; disease; data mining; dimension reduction. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=91862 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbisy:v:28:y:2018:i:2:p:163-177

Access Statistics for this article

More articles in International Journal of Business Information Systems from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijbisy:v:28:y:2018:i:2:p:163-177