EconPapers    
Economics at your fingertips  
 

Cluster analysis for diabetic retinopathy prediction using data mining techniques

Tanvi Anand, Rekha Pal and Sanjay Kumar Dubey

International Journal of Business Information Systems, 2019, vol. 31, issue 3, 372-390

Abstract: Diabetic retinopathy is a one of the increasing medical situation occurs due to fluctuating insulin level in the blood that leads to loss of vision. It is an ophthalmic disease which is mainly occurs due to the generation of the new abnormal blood vessels. Diabetic retinopathy with exudates are causing main health problem that leads to loss of sight. Patient suffering from diabetes are advised to undergo continual retinal test by reason of diabetic retinopathy. As the population is quite large as compared to healthcare system available, tests should be optimised and identification of the disease is complex and time consuming task. In this paper, clustering technique is used among the various data mining techniques, clustering is the good approach to handle the complex task. Experiment is conducted to identify the best clustering technique which can easily identify the various impacting factors of DR in less complex way. The experimental results reflect that the performance of K-means is better than other clustering techniques. This analysis will help the medical practitioner to identify best algorithm for disease detection and provide preventive measures in advance.

Keywords: clustering techniques; disease; data mining; classification. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=101113 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbisy:v:31:y:2019:i:3:p:372-390

Access Statistics for this article

More articles in International Journal of Business Information Systems from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijbisy:v:31:y:2019:i:3:p:372-390