EconPapers    
Economics at your fingertips  
 

Predicting student performance: a classification model using machine learning algorithms

Esra'a Alshdaifat, Aisha Zaid and Ala'a Alshdaifat

International Journal of Business Information Systems, 2022, vol. 39, issue 3, 349-364

Abstract: With the increasing availability of educational databases, extraction of interesting patterns and relationships from such data becomes extremely attractive and challenging. Discovering implicit patterns related to student performance is potentially helpful to enhance student achievement. In this paper, a student performance prediction model is generated utilising machine learning algorithms. The central idea is that identifying the dominant features that affect student performance results in generating an effective student performance prediction model. In order to achieve this goal different feature selection approaches are considered. The reported experimental results indicated that the effectiveness of student performance prediction model is significantly affected by the dimensions featured in the considered dataset.

Keywords: student performance; classification; grade prediction; educational data; pattern extraction; feature selection. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=122340 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbisy:v:39:y:2022:i:3:p:349-364

Access Statistics for this article

More articles in International Journal of Business Information Systems from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijbisy:v:39:y:2022:i:3:p:349-364