EconPapers    
Economics at your fingertips  
 

Integration of directional distance formulation of DEA and canonical correlation

Udaya Shetty and T.P.M. Pakkala

International Journal of Business Performance and Supply Chain Modelling, 2016, vol. 8, issue 1, 66-77

Abstract: Data envelopment analysis (DEA) which has been widely used in recent times for measuring productive efficiency of decision making units (DMUs). The main limitation of DEA is that many numbers of DMUs comes out to be efficient when there are relatively large number of input and output variables as compared to number of DMUs under evaluation. In extreme cases may cause the majority of the units to be efficient. Tackle this limitation canonical correlation analysis (CCA) is applied in this paper. This paper develops a method that integrates the directional distance formulation of DEA and CCA to measure the efficiency and rank the DMUs. There are situations in which more than one significant canonical correlation exists with both positive and negative values. This problem is addressed in this paper by using directional distance function approach to measure the efficiency, where negative canonical correlation exists. This method can also be applied where two or more canonical correlations are significant.

Keywords: data envelopment analysis; DEA; canonical correlation; directional distance function; DMU efficiency; decision making units; DMUs. (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=76003 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbpsc:v:8:y:2016:i:1:p:66-77

Access Statistics for this article

More articles in International Journal of Business Performance and Supply Chain Modelling from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijbpsc:v:8:y:2016:i:1:p:66-77