EconPapers    
Economics at your fingertips  
 

Early warning system for preventing bank distress in Brazil

Flavio Barboza, Jorge Henrique de Frias Barbosa, Herbert Kimura, Gustavo Carvalho Santos and Paulo Cortez

International Journal of Business and Systems Research, 2023, vol. 17, issue 3, 326-346

Abstract: The global financial crisis in 2007/2008 showed how important is to be prudent with events related to the banking sector, illustrating emphatically the contagion in the financial system caused by distress in one or more banks. This issue goes beyond competitiveness and the interrelationship among its members, requiring at least signs or warnings of potential problems in such institutions. Thus, the present study presents some early warning system models for bank crises and bank distress, which are empirically tested for Brazilian banks. In addition to the traditional logit, we analyse two machine learning techniques are: random forest (RF) and support vector machine (SVM). The database of Brazilian banks covers 179 events considered as unsound bank. Our findings suggest that RF and SVM underperform the logit model. Moreover, RF models presented greater predictive capacity with the time windows of 32 and 34 months, proving adequate to the regulators' needs.

Keywords: early warning system; EWS; banking crisis; distress prediction; machine learning techniques; Brazil. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=130632 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbsre:v:17:y:2023:i:3:p:326-346

Access Statistics for this article

More articles in International Journal of Business and Systems Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijbsre:v:17:y:2023:i:3:p:326-346