EconPapers    
Economics at your fingertips  
 

A novel algorithm for extracting knowledge based on mining multi-level sequential patterns

Negar Gh Ghanbari and Mohammad Reza Gholamian

International Journal of Business and Systems Research, 2012, vol. 6, issue 3, 269-278

Abstract: In this paper, we consider the problem of finding sequential patterns in multi-levels, with aid of candidate generate and test approach. Based on this technique, many sequential pattern algorithms have been developed, but few of them have paid attention to multi-level concept. We thus purpose a new efficient algorithm, called dynamic vertices levelwise (DVlw) for mining multi-level sequence patterns. It uses the same principals as other candidate generation and test algorithms but handles multi-levelled property for sequences prior to and separately from the testing and counting steps of candidate sequences. Empirical evaluation using synthetic data indicates that the proposed algorithm performs significantly faster than a state-of-the-art algorithm with this approach.

Keywords: knowledge extraction; knowledge discovery; sequential patterns; pattern mining; multi-level patterns; data mining. (search for similar items in EconPapers)
Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=47926 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbsre:v:6:y:2012:i:3:p:269-278

Access Statistics for this article

More articles in International Journal of Business and Systems Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijbsre:v:6:y:2012:i:3:p:269-278