Failure probability analysis of heliostat systems
Samir Benammar and
Kong Fah Tee
International Journal of Critical Infrastructures, 2020, vol. 16, issue 4, 342-366
Abstract:
Heliostats represent the most important maintenance cost in the solar power tower plant. The aim of this work is to provide a failure probability analysis for heliostat design in order to minimize this maintenance cost. Based on mechanics of material study and wind aerodynamic analysis, a performance function, with five random variables, has been developed wherein the random variables are: wind speed, inside and outside pedestal diameters, pedestal yield stress and mirror mass. Four main methods have been proposed: first order reliability method, second order reliability method, Monte Carlo (MC) method and subset simulation (SS) method. The variation of failure probability with the variation of pedestal wall thickness and wind speed, for different outside diameters and heliostat azimuth and elevation angles, has been simulated. The results show that SS is more efficient and accurate for small failure probabilities; however, MC is more accurate for high failure probabilities.
Keywords: failure analysis; heliostat; probability of failure; subset simulation; wind load. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.inderscience.com/link.php?id=112037 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijcist:v:16:y:2020:i:4:p:342-366
Access Statistics for this article
More articles in International Journal of Critical Infrastructures from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().