Bias decomposition in the value-at-risk calculation by a GARCH(1,1)
GholamReza Keshavarz Haddad and
Mehrnoosh Hasanzade
International Journal of Computational Economics and Econometrics, 2020, vol. 10, issue 2, 183-202
Abstract:
The recent researches show that value-at-risk (VaR) estimations are biased and is calculated conservatively. Bao and Ullah (2004) proved the bias of an ARCH(1) model for VaR can be decomposed in to two parts: bias due to the returns' misspecification distributional assumption for GARCH(1,1), i.e., (Bias1) and bias due to estimation error, i.e., (Bias2). Using quasi maximum likelihood estimation method this paper intends to find an analytical framework for the two sources of bias. We generate returns from Normal and t-student distributions, then estimate the GARCH(1,1) under Normal and t-student assumptions. Our findings reveal that Bias1 equals to zero for the Normal likelihood function, but Bias2 ≠ 0. Also, Bias1 and Bias2 are not zero for the t-student likelihood function as analytically were expected, however, all the biases become modest, when the number of observations and degree of freedom gets large.
Keywords: VaR; value-at-risk; GARCH(1; 1); second-order bias. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.inderscience.com/link.php?id=107372 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijcome:v:10:y:2020:i:2:p:183-202
Access Statistics for this article
More articles in International Journal of Computational Economics and Econometrics from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().