EconPapers    
Economics at your fingertips  
 

A robust generalised maximum entropy estimator for ill-posed estimation problems

Graeme J. Doole

International Journal of Computational Economics and Econometrics, 2018, vol. 8, issue 2, 129-143

Abstract: The generalised maximum entropy (GME) estimator provides a flexible means of information recovery from ill-posed estimation problems. However, coefficient estimates are sensitive to the exogenous support bounds defined for coefficient and error terms. This paper describes a new estimator that identifies informative support bounds, prior to the implementation of GME regression. These bounds are estimated using interval-valued mathematical programming in a way that is data-based, replicable, and robust. The superiority of the new estimator over various alternatives is demonstrated with a series of non-trivial Monte Carlo simulations involving different degrees of multicollinearity, sample sizes, and error structures.

Keywords: maximum entropy; support bounds; ill-posed problems; multicollinearity; low sample size; interval-valued optimisation. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=91044 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijcome:v:8:y:2018:i:2:p:129-143

Access Statistics for this article

More articles in International Journal of Computational Economics and Econometrics from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijcome:v:8:y:2018:i:2:p:129-143