Mining hidden opinions from objective sentences
Farek Lazhar
International Journal of Data Mining, Modelling and Management, 2018, vol. 10, issue 2, 113-126
Abstract:
Sentiment analysis and opinion mining is a very popular and active research area in natural language processing, it deals with structured and unstructured data to identify and extract people's opinions, sentiments and emotions in many resources of subjectivity such as product reviews, blogs, social networks, etc. All existing feature-level opinion mining approaches deal with the detection of subjective sentences and eliminate objective ones before extracting explicit features and their related positive or negative polarities. However, objective sentences can carry implicit opinions and a lack attention given to such sentences can adversely affect the obtained results. In this paper, we propose a classification-based approach to extract implicit opinions from objective sentences. Firstly, we apply a rule-based approach to extract explicit feature-opinion pairs from subjective sentences. Secondly, in order to build a classification model, we construct a training corpus based on extracted explicit feature-opinion pairs and subjective sentences. Lastly, mining implicit feature-opinion pairs from objective sentences is formulated into a text classification problem using the model previously built. Tested on customer reviews in three different domains, experimental results show the effectiveness of mining opinions from objective sentences.
Keywords: opinion mining; hidden opinion; objectivity; subjectivity; supervised learning. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=92534 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:10:y:2018:i:2:p:113-126
Access Statistics for this article
More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().