EconPapers    
Economics at your fingertips  
 

Support vector machines for credit risk assessment with imbalanced datasets

Sihem Khemakhem and Younes Boujelbene

International Journal of Data Mining, Modelling and Management, 2018, vol. 10, issue 2, 171-187

Abstract: Support vector machines (SVM) have a limited performance in credit scoring issues due to the imbalanced data sets in which the number of unpaid is lower than paid loans. In this work, we developed an SVM model with more kernels on a set of imbalanced data and suggested two data resampling alternatives: random over sampling (ROS) and synthetic minority oversampling technique (SMOTE). The aim of this work is to explore the relevance of re-sampling data with the SVM technique for an accurate credit risk prediction rate to the class imbalance constraint. The performance criteria chosen to evaluate the suggested technique were accuracy, sensitivity specificity, error type I, error type II, G-mean and the area under the receiver operating characteristic curve (AUC). Significant empirical results obtained from an experimental study of a real imbalanced database of loans granted by a Tunisian bank demonstrated the performance improvement thanks to sampling strategies in SVM, thus leading to a better prediction accuracy of the creditworthiness of borrowers.

Keywords: credit scoring; support vector machines; SVM; synthetic minority oversampling technique; SMOTE; random over sampling; ROS; credit risk assessment; imbalanced datasets; performance criteria; Tunisian bank; creditworthiness prediction accuracy. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=92538 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:10:y:2018:i:2:p:171-187

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:10:y:2018:i:2:p:171-187