Proactive and reactive context reasoning architecture for smart web services
Nawel Sekkal,
Sidi Mohamed Benslimane,
Michael Mrissa,
Cheol Young Park and
Boudjemaa Boudaa
International Journal of Data Mining, Modelling and Management, 2020, vol. 12, issue 1, 1-27
Abstract:
The web of things (WoT) uses web technologies to connect embedded objects to each other and to deliver services to stakeholders. The context of these interactions (situation) is a key source of information which can be sometimes uncertain. In this paper, we focus on the development of intelligent web services. The main requirements for intelligent service are to deal with context diversity, semantic context representation and the capacity to reason with uncertain information. From this perspective, we propose a framework for intelligent services to deal with various contexts, to reactively respond to real-time situations and proactively predict future situations. For the semantic representation of context, we use PR-OWL, a probabilistic ontology based on multi-entity Bayesian networks. PR-OWL is flexible enough to represent complex and uncertain contexts. We validate our framework with an intelligent plant watering use case to show its reasoning capabilities.
Keywords: smart web service; the web of things; context reasoning; proactive; reactive; multi-entity Bayesian networks; MEBNs; PR-OWL. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=105609 (text/html)
Open Access
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:12:y:2020:i:1:p:1-27
Access Statistics for this article
More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().