A survey of term weighting schemes for text classification
Abdullah Alsaeedi
International Journal of Data Mining, Modelling and Management, 2020, vol. 12, issue 2, 237-254
Abstract:
Text document classification approaches are designed to categorise documents into predefined classes. These approaches have two main components: document representation models and term-weighting methods. The high dimensionality of feature space has always been a major problem in text classification methods. To resolve high dimensionality issues and to improve the accuracy of text classification, various feature selection approaches were presented in the literature. Besides which, several term-weighting schemes were introduced that can be utilised for feature selection methods. This work surveys and investigates various term (feature) weighting approaches that have been presented in the text classification context.
Keywords: document frequency; supervised term weighting; text classification; unsupervised term weighting. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=106741 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:12:y:2020:i:2:p:237-254
Access Statistics for this article
More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().