EconPapers    
Economics at your fingertips  
 

A quest for better anomaly detectors

Mehdi Soleymani

International Journal of Data Mining, Modelling and Management, 2020, vol. 12, issue 4, 447-458

Abstract: Anomaly detection is a very popular method for detecting exceptional observations which are very rare. It has been frequently used in medical diagnosis, fraud detection, etc. In this article, we revisit some popular algorithms for anomaly detection and investigate why we are on a quest for a better algorithm for identifying anomalies. We propose a new algorithm, which unlike other popular algorithms, is not looking for outliers directly, but it searches for them by removing the inliers (opposite to outliers) in an iterative way. We present an extensive simulation study to show the performance of the proposed algorithm compared to its competitors.

Keywords: anomaly detection; algorithm; k -nearest neighbour. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=111399 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:12:y:2020:i:4:p:447-458

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:12:y:2020:i:4:p:447-458