EconPapers    
Economics at your fingertips  
 

Graph-based cumulative score using statistical features for multilingual automatic text summarisation

Abdelkrime Aries, Djamel Eddine Zegour and Walid Khaled Hidouci

International Journal of Data Mining, Modelling and Management, 2021, vol. 13, issue 1/2, 37-64

Abstract: Multilingual summarisation began to receive more attention these late years. Many approaches can be used to achieving this, among them: statistical and graph-based approaches. Our idea is to combine these two approaches into a new extractive text summarisation method. Surface statistical features are used to calculate a primary score for each sentence. The graph is used to selecting some candidate sentences and calculating a final score for each sentence based on its primary score and those of its neighbours in the graph. We propose four variants to calculating the cumulative score of a sentence. Also, the order of sentences is an important aspect of summary readability. We propose some other algorithms to generating the summary not just based on final scores but on sentences connections in the graph. The method is tested using MultiLing'15 workshop's MSS corpus and ROUGE metric. It is evaluated against some well known methods and it gives promising results.

Keywords: automatic text summarisation; ATS; graph-based summarisation; statistical features; multilingual summarisation; extractive summarisation. (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=112909 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:13:y:2021:i:1/2:p:37-64

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:13:y:2021:i:1/2:p:37-64