EconPapers    
Economics at your fingertips  
 

Time-series gradient boosting tree for stock price prediction

Kei Nakagawa and Kenichi Yoshida

International Journal of Data Mining, Modelling and Management, 2022, vol. 14, issue 2, 110-125

Abstract: We propose a time-series gradient boosting tree for a dataset with time-series and cross-sectional attributes. Our time-series gradient boosting tree has weak learners with time-series and cross-sectional attributes in its internal node, and split examples based on similarity between a pair of time-series or impurity between cross-sectional attributes. Dissimilarity between a pair of time-series is defined by the dynamic time warping method. In other words, the decision tree is constructed based on the shape that the time-series is similar or not similar to its past shape. We conducted an empirical analysis using major world indices and confirmed that our time-series gradient boosting tree is superior to prior research methods in terms of both profitability and accuracy.

Keywords: dynamic time warping method; time-series decision tree; time-series gradient boosting tree; stock price prediction. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=123357 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:14:y:2022:i:2:p:110-125

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:14:y:2022:i:2:p:110-125