Developing a machine learning framework to determine the spread of COVID-19 in the USA using meteorological, social, and demographic factors
Akash Gupta and
Amir Gharehgozli
International Journal of Data Mining, Modelling and Management, 2022, vol. 14, issue 2, 89-109
Abstract:
Coronavirus disease of 2019 (COVID-19) has become a pandemic in the matter of a few months, since the outbreak in December 2019 in Wuhan, China. We study the impact of weather factors including temperature and pollution on the spread of COVID-19. We also include social and demographic variables such as per capita gross domestic product (GDP) and population density. Adapting the theory from the field of epidemiology, we develop a framework to build analytical models to predict the spread of COVID-19. In the proposed framework, we employ machine learning methods including linear regression, linear kernel support vector machine (SVM), radial kernel SVM, polynomial kernel SVM, and decision tree. Given the nonlinear nature of the problem, the radial kernel SVM performs the best and explains 95% more variation than the existing methods. In line with the literature, our study indicates the population density is the critical factor to determine the spread. The univariate analysis shows that a higher temperature, air pollution, and population density can increase the spread. On the other hand, a higher per capita GDP can decrease the spread.
Keywords: COVID-19; disease spread; social and demographic factors; machine learning; epidemiology; predictive modelling. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=123360 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:14:y:2022:i:2:p:89-109
Access Statistics for this article
More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().