Detecting and exploiting symmetries in sequential pattern mining
Ikram Nekkache,
Said Jabbour,
Nadjet Kamel and
Lakhdar Sais
International Journal of Data Mining, Modelling and Management, 2022, vol. 14, issue 4, 309-334
Abstract:
In this paper, we introduce a new framework for discovering and using symmetries in sequential pattern mining tasks. Symmetries are permutations between items that leave invariant the sequential database. Symmetries present several potential benefits. They can be seen as a new kind of structural patterns expressing regularities and similarities between items. As symmetries induce a partition of the sequential patterns into equivalent classes, exploiting them would allow to improve the pattern enumeration process, while reducing the size of the output. To this end, we first address the problem of symmetry discovery from database of sequences. Then, we first show how Apriori-like algorithms can be enhanced by dynamic integration of the detected symmetries. Secondly, we provide a second symmetry breaking approach allowing to eliminate symmetries in a pre-processing step by reformulating the sequential database of transactions. Our experiments clearly show that several sequential pattern mining datasets contain such symmetry-based regularities. We also experimentally demonstrate that using such symmetries would results in significant reduction of the search space on some datasets.
Keywords: data mining; sequential pattern mining; symmetries. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=126663 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:14:y:2022:i:4:p:309-334
Access Statistics for this article
More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().