EconPapers    
Economics at your fingertips  
 

Big data visual exploration as a recommendation problem

Moustafa Sadek Kahil, Abdelkrim Bouramoul and Makhlouf Derdour

International Journal of Data Mining, Modelling and Management, 2023, vol. 15, issue 2, 133-153

Abstract: Big data visual exploration is believed to be considered as a recommendation problem. This proximity concerns essentially their purpose: it consists in selecting among huge amount of data those that are the most valuable according to specific criteria, to eventually present it to users. On the other hand, the recommendation systems are recently resolved mostly using neural networks (NNs). The present paper proposes three alternative solutions to improve the big data visual exploration based on recommendation using matrix factorisation (MF) namely: conventional, alternating least squares (ALS)-based and NN-based methods. It concerns generating the implicit data used to build recommendations, and providing the most valuable data patterns according to the user profiles. The first two solutions are developed using Apache Spark, while the third one was developed using TensorFlow2. A comparison based on results is done to show the most efficient one. The results show their applicability and effectiveness.

Keywords: big data visualisation; recommendation systems; collaborative filtering; content-based filtering; matrix factorisation; alternating least square; machine learning; neural networks. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=131378 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:15:y:2023:i:2:p:133-153

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:15:y:2023:i:2:p:133-153