A new process for healthcare big data warehouse integration
Nouha Arfaoui
International Journal of Data Mining, Modelling and Management, 2023, vol. 15, issue 3, 240-254
Abstract:
Healthcare domain generates huge amount of data from different and heterogynous clinical data sources using different devices to ensure a good managing hospital performance. Because of the quantity and complexity structure of the data, we use big healthcare data warehouse for the storage first and the decision making later. To achieve our goal, we propose a new process that deals with this type of data. It starts by unifying the different data, then it extracts it, loads it into big healthcare data warehouse and finally it makes the necessary transformations. For the first step, the ontology is used. It is the best solution to solve the problem of data sources heterogeneity. We use, also, Hadoop and its ecosystem including Hive, MapReduce and HDFS to accelerate the treatment through the parallelism exploiting the performance of ELT to ensure the 'schema-on-read' where the data is stored before performing the transformation tasks.
Keywords: big healthcare data warehouse; BHDW; Hive; Hadoop; MapReduce; ontology; big data; ELT; ETL. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=132974 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:15:y:2023:i:3:p:240-254
Access Statistics for this article
More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().