EconPapers    
Economics at your fingertips  
 

Detection of terrorism's apologies on Twitter using a new bi-lingual dataset

Khaled Bedjou and Faical Azouaou

International Journal of Data Mining, Modelling and Management, 2023, vol. 15, issue 4, 331-354

Abstract: A lot of terrorist apology content is being shared on social media without being detected. Therefore, the automatic and immediate detection of these contents is essential for people's safety. In this paper, we propose a language independent process to detect and classify terrorism's apologies on Twitter into three classes (apology, no apology, and neutral). We tested the process on a bi-lingual (Arabic and English) dataset of 12,155 manually annotated tweets. We conducted two sets of experiments, one with imbalanced data and the other with oversampled data. We compared the classification performances of four machine learning algorithms (RF, DT, KNN, and NB) and five deep learning algorithms (GRU, SimpleRNN, LSTM, BiLSTM, and BERT). Our comparative study concluded that BERT achieves better classification performance than the others do, with an accuracy of 0.84 for Arabic and 0.81 for English on imbalanced data, and 0.88 for Arabic and 0.91 for English on oversampled data.

Keywords: terrorism's apology; social network analysis; Twitter; NLP; sentiment analysis; machine learning; deep learning; transfer learning. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=134581 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:15:y:2023:i:4:p:331-354

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:15:y:2023:i:4:p:331-354