EconPapers    
Economics at your fingertips  
 

Using data mining to integrate recency-frequency-monetary value analysis and credit scoring methods for bank customer behaviour analysis

Mohammad Khanbabaei, Pantea Parsi and Najmeh Farhadi

International Journal of Data Mining, Modelling and Management, 2023, vol. 15, issue 4, 369-392

Abstract: Banks apply credit scoring to identify customers with low credit risk. Additionally, recency-frequency-monetary value (RFM) analysis method is suitable for identifying valuable bank customers. Data mining techniques can be used to discover useful patterns hidden in customer data. However, in previous research, data mining has been used separately in both credit scoring and RFM approaches. To evaluate customer behaviour, banks must employ credit scoring and RFM analysis method, simultaneously. This study proposes a framework for using data mining techniques to integrate credit scoring and RFM methods in the field of banking. In this framework, k-means had better performance than Kohonen network and DBSCAN to identify and cluster valuable customers based on the RFM and credit scoring indices. Moreover, the C5 decision tree, BN, and SVM with 94.10%, 92.71%, and 92.36% accuracy had better performance to classify valuable bank customers based on RFM and credit scoring indices.

Keywords: data mining; RFM method; credit scoring; banking; marketing. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=134598 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:15:y:2023:i:4:p:369-392

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:15:y:2023:i:4:p:369-392