Clustering-based multidimensional sequential pattern mining of semantic trajectories
Thouraya Sakouhi and
Jalel Akaichi
International Journal of Data Mining, Modelling and Management, 2024, vol. 16, issue 2, 148-175
Abstract:
Knowledge discovery from mobility data is about identifying behaviours from trajectories. In fact, mining masses of trajectories is required to have an overview of this data, notably, investigate the relationship between different entities movement. Most state-of-the-art work in this issue operates on raw trajectories. Nevertheless, behaviours discovered from raw trajectories are not as rich and meaningful as those discovered from semantic trajectories. In this paper, we establish a mining approach to extract patterns from semantic trajectories. We propose to apply sequential pattern mining based on a pre-processing step of clustering to alleviate the former's temporal complexity. Mining considers the spatial and temporal dimensions at different levels of granularity providing then richer and more insightful patterns about humans behaviour. We evaluate our work on tourists semantic trajectories in Kyoto. Results showed the effectiveness and efficiency of our model compared to state-of-the-art work.
Keywords: mobility data; trajectories; semantic modelling; sequential pattern mining; clustering; mobility pattern. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=138825 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:16:y:2024:i:2:p:148-175
Access Statistics for this article
More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().