EconPapers    
Economics at your fingertips  
 

Classification of varying length multivariate time series using Gaussian mixture models and support vector machines

S. Chandrakala and C. Chandra Sekhar

International Journal of Data Mining, Modelling and Management, 2010, vol. 2, issue 3, 268-287

Abstract: In this paper, we propose two approaches in a hybrid framework in which a Gaussian mixture model (GMM) based method is used to obtain a fixed length pattern representation for a varying length time series and then a discriminative model is used for classification. In score vector based approach, each time series in a training data set is modelled by a GMM. A log-likelihood score vector representation is obtained by applying a time series to all GMMs. In segment modelling based approach, a time series is segmented into fixed number of segments and a GMM is built for each segment. Parameters of GMMs of segments are concatenated to obtain a parametric vector representation. Support vector machine is used for classification of score vector representation and parametric vector representation of time series. The proposed approaches are studied for speech emotion recognition and audio clip classification tasks.

Keywords: varying length time series; time series classification; vector sets; Gaussian mixture model; GMM; score vector representation; support vector machines; SVM; speech emotion recognition; audio clip classification; data mining. (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=33537 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:2:y:2010:i:3:p:268-287

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:2:y:2010:i:3:p:268-287