EconPapers    
Economics at your fingertips  
 

A pattern matching approach for clustering gene expression data

Rosy Das, Jugal Kalita and Dhruba K. Bhattacharyya

International Journal of Data Mining, Modelling and Management, 2011, vol. 3, issue 2, 130-149

Abstract: Identifying groups of genes with similar expression time courses is crucial in the analysis of gene expression time series data. This paper proposes a regulation-based clustering approach, PatternClus, for clustering gene expression data. The method also identifies sub-clusters based on an order preserving ranking approach. The clustering method was experimented in light of real life datasets and the proposed method has been established to perform satisfactorily. PatternClus was compared to some of the well-known clustering algorithms (k-means and hierarchical algorithm) and was found to give better results in terms of z-score measure of cluster validation. An incremental version of PatternClus is also presented here which helps in identifying clusters incrementally where the database is continuously increasing.

Keywords: gene expression; microarrays; regulation patterns; pattern matching; clustering; sub-clusters; incremental clustering. (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=41492 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:3:y:2011:i:2:p:130-149

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:3:y:2011:i:2:p:130-149