EconPapers    
Economics at your fingertips  
 

A novel approach for effective web page classification

J. Alamelu Mangai, V. Santhosh Kumar and S. Appavu Balamurugan

International Journal of Data Mining, Modelling and Management, 2013, vol. 5, issue 3, 233-245

Abstract: With the exponential increase in volume of the WWW every day, web page classification has become tedious. Since with no quality data there is no quality mining results, it is worth to emphasise on fine tuning the data for classification, rather than improving the classifiers themselves. This paper investigates the methods for improving web page classification by feature extraction, selection and data tuning. This paper also proposes a new classification model for web page classification called a probabilistic web page classifier (PWPC). It is based on a probabilistic framework and attribute-value similarity measure (AVS). The proposed method is tested on a benchmarking dataset, WebKB and the performance of PWPC on the fine tuned web pages has exhibited significant accuracy over the traditional machine learning classifiers.

Keywords: feature selection; data tuning; web page classification; machine learning; WebKB; feature extraction; classifiers. (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=55860 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:5:y:2013:i:3:p:233-245

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:5:y:2013:i:3:p:233-245