EconPapers    
Economics at your fingertips  
 

An evolutionary algorithm for global induction of regression and model trees

Marcin Czajkowski and Marek Kretowski

International Journal of Data Mining, Modelling and Management, 2013, vol. 5, issue 3, 261-276

Abstract: Most tree-based algorithms are typical top-down approaches that search only for locally optimal decisions at each node and does not guarantee the globally optimal solution. In this paper, we would like to propose a new evolutionary algorithm for global induction of univariate regression trees and model trees that associate leaves with simple linear regression models. The general structure of our solution follows a typical framework of evolutionary algorithms with an unstructured population and a generational selection. We propose specialised genetic operators to mutate and cross-over individuals (trees), fitness function that base on the Bayesian information criterion and smoothing process that improves the prediction accuracy of the model tree. Performed experiments on 15 real-life datasets show that proposed solution can be significantly less complex with at least comparable performance to the classical top-down counterparts.

Keywords: evolutionary algorithms; regression trees; model trees; SLR; linear regression; Bayesian information criterion; BIC; regression modelling. (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=55865 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:5:y:2013:i:3:p:261-276

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:5:y:2013:i:3:p:261-276