EconPapers    
Economics at your fingertips  
 

Towards robust classifiers using optimal rule discovery

Sahar M. Ghanem, Mona A. Mohamed and Magdy H. Nagi

International Journal of Data Mining, Modelling and Management, 2014, vol. 6, issue 3, 261-284

Abstract: A classification rule set is usually generated from history data to make predictions on future coming data that is usually not as complete as the training data. In this work, we provide a review of the robust rule-based optimal associate classifier (OAC) and its main building blocks. OAC is robust in the sense that it is able to make an accurate prediction when the future record is incomplete. OAC robustness is achieved by finding a larger classification rule set. We propose to initially transform the database to an item set tree (IST) data structure for efficient support-counting. Then, the optimal rule discovery (ORD) is adopted to mine the rules that are fed to OAC to select the classification rules from. Several experiments have been conducted to compare OAC classification accuracy and number of rules for a wide range of settings, and a classifier measure is introduced.

Keywords: data mining; association rules discovery; optimal rule discovery; ORD; rule-based classifiers; robust classifiers; classification rules. (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=65149 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:6:y:2014:i:3:p:261-284

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:6:y:2014:i:3:p:261-284