An optimal rough fuzzy clustering algorithm using particle swarm optimisation
J. Anuradha and
B.K. Tripathy
International Journal of Data Mining, Modelling and Management, 2015, vol. 7, issue 4, 257-275
Abstract:
Rough fuzzy hybrid models are widely used for handling uncertain and vague data and are very efficient in handling real life applications. Particle swarm optimisation (PSO) has been found to be a useful tool to optimise and find the best out of a set of solutions. In this paper, we propose a computational algorithm by embedding PSO in rough fuzzy hybrid clustering, which forms overlapping clusters with optimised partition. The proposed algorithm uses rough fuzzy C-means to formulate fuzzy lower and fuzzy boundary region of the clusters based on membership of objects with respect to their prototypes. This method has been applied to a swarm of clusters to get the best partitions at local and global levels qualified by Davies Bouldin (DB) and Dunn (D) indexes as fitness measures. This algorithm generates clusters dynamically and its superiority over other existing clustering techniques is established experimentally by taking several real world datasets.
Keywords: cluster validity; particle swarm optimisation; fuzzy C-means; FCM; rough C-means; RCM; rough fuzzy PSO; RFPSO; rough sets; fuzzy clustering; uncertain data; vague data. (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=73864 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:7:y:2015:i:4:p:257-275
Access Statistics for this article
More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().