EconPapers    
Economics at your fingertips  
 

Association rule mining using enhanced apriori with modified GA for stock prediction

S. Prasanna and D. Ezhilmaran

International Journal of Data Mining, Modelling and Management, 2016, vol. 8, issue 2, 195-207

Abstract: In stock marketing, picking the right stock depends on the true stock value and the ability to pick the stock is crucial as it influences the profit of investors. Data mining techniques have been used for forecasting the stock market price and have shown successful results too. Yet, the investors are looking for a genuine forecasting model to predict the stock rule more efficiently. This work intends to form a technique based on association rule mining using enhanced apriori algorithm with modified genetic algorithm for the estimation of fine stock rule. The enhanced apriori algorithm mainly focuses on association rule mining and hence to avoid the time computation complexity. This modified GA uses interrelating crossover and mutation operations. These genetic operations avoid genetic algorithm from premature convergence and hence, enables strong association rules to be generated.

Keywords: data mining; apriori algorithm; stock rules; genetic algorithms; association rules mining; stock prediction; stock markets; stock prices; forecasting models. (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=77162 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:8:y:2016:i:2:p:195-207

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:8:y:2016:i:2:p:195-207