Rule grouping and multiple minimum support thresholds for semantic multi-label associative classifier using feature reoccurrences
Preeti A. Bailke and
S.T. Patil
International Journal of Data Mining, Modelling and Management, 2017, vol. 9, issue 2, 163-183
Abstract:
Multi-label classification is one of the important tasks in data mining. Researchers have addressed and extensively studied supervised classification which has vast applications in many domains. Associative classifiers are better performing classifiers, but they still have some issues which need to be addressed. This paper handles class imbalance problem, semantically organises vast number of generated rules, and applies relevant rules during classification. An algorithm called semantic multi-label associative classifier using feature reoccurrences (SeMACR) is proposed. Considering reoccurrence of features while generating rules proves to be beneficial, in particular for text documents. Class imbalance problem is handled with the help of balanced training and use of multiple minimum support thresholds based on the class distribution. A novel semantic-based approach is proposed for grouping of association rules using relatedness score between features rather than the traditional distance-based measure. Such organisation of rules makes them manageable and interpretable. During classification, only the relevant rules i.e., the rules present in the semantically most related group are applied. SeMACR algorithm has shown improved or comparable performance as compared to state-of-the-art techniques.
Keywords: multi-label classification; semantic rule grouping; reoccurrence of features; association rules; multiple minimum support thresholds; balanced training. (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=85647 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:9:y:2017:i:2:p:163-183
Access Statistics for this article
More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().