An efficient hybrid clustering algorithm for segmentation: Autocluster
Seyed Behnam Khakbaz,
Marziyeh Pourestarabadi and
Nastaran Hajiheydari
International Journal of Data Science, 2017, vol. 2, issue 3, 205-220
Abstract:
A new automatic clustering algorithm has been proposed in this paper, which does not need clustering information, such as number of clusters and radius of density. Moreover, this algorithm generates robust results, and named Autocluster. Autocluster is a suitable algorithm for customer segmentation, and as it is known, clustering information is not available properly in customer segmentation. Autocluster applies concepts of partitioning clustering algorithms, hierarchical clustering algorithms and density-based clustering algorithm. Consequently, a new, automatic and high-precision algorithm has been proposed. Autocluster consists of four steps: developing 'distance matrix', identifying 'best point (data record)', developing 'point matrix' and 'clustering'. These steps have been explained comprehensively in this paper. Furthermore, iris database and a synthetic dataset has been analysed by Autocluster to verify its capabilities vs. K-means algorithm. Moreover, an Iranian insurance dataset has been clustered by Autocluster, which has shown satisfying results, compared to the results from K-means.
Keywords: clustering; Autocluster; hybrid clustering algorithm; K-means algorithm; segmentation. (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=86258 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdsci:v:2:y:2017:i:3:p:205-220
Access Statistics for this article
More articles in International Journal of Data Science from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().