Continuous skyline queries in distributed environment
Ibrahim Gomaa and
Hoda M.O. Mokhtar
International Journal of Data Science, 2019, vol. 4, issue 1, 45-62
Abstract:
With the expanding number of communications from different mobile applications that acquire location information, the demand for continuous skyline queries has increased. In addition, the extremely fast increase in the data volume and mobile applications that deal with such volume of data such as check-ins recommendation, information services and applications of road networks; have both driven the need to adapt new processing environments to deal with huge amounts of data. In this paper, we present a number of efficient algorithms for processing continuous skyline queries on large datasets using MapReduce framework. The main idea of our proposed algorithms is to compute the skyline query only once at the starting position; then update on the result at the movement of the query point rather than computing the skyline at every time from scratch. In addition, experimental results are conducted which demonstrate the accuracy, performance and efficiency of the proposed algorithms.
Keywords: continuous query processing; moving object; parallel computation; skyline queries; big data management. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=98360 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdsci:v:4:y:2019:i:1:p:45-62
Access Statistics for this article
More articles in International Journal of Data Science from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().