EconPapers    
Economics at your fingertips  
 

Most preferable combination of explicit drift detection approaches with different classifiers for mining concept drifting data streams

Ritesh Srivastava and Veena Mittal

International Journal of Data Science, 2019, vol. 4, issue 3, 196-214

Abstract: Sensors in the real-world applications are the major sources of big data streams with varying underlying data distribution. Continuously generated time varying data streams are commonly referred as concept drifting data streams. Many concept drifting data mining algorithms explicitly utilise the drift detection algorithms for ensuring the forgetting of out-dated concepts and learn new concepts upon occurrence of drifts. In concept drifting data streams, the accuracy of the learner depends on the accuracy of the drift detection algorithm and its promptness towards drifts detection. For maintaining the consistent high accuracy in the classification of concept drifting data streams, it is very important to understand the preferable combinations of drift detection algorithms with the classification algorithms. In order to explore such preferable combinations, this work presents an empirical evaluation of some popular drift detection methods with some state-of-art classification algorithms on some standard benchmark datasets of real world.

Keywords: concept drifts; online learning; data stream mining; big data; machine learning; classification; drift detection methods; incremental learning; online learning; ensemble. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=102790 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdsci:v:4:y:2019:i:3:p:196-214

Access Statistics for this article

More articles in International Journal of Data Science from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdsci:v:4:y:2019:i:3:p:196-214