EconPapers    
Economics at your fingertips  
 

Privacy protection and anomaly detection in intelligent sorting based on convolutional neural networks in IoT environment

Han Zhou, Danping Chen, Gengxin Chen and Xiaoli Lin

International Journal of Data Science, 2024, vol. 9, issue 3/4, 256-275

Abstract: At present, the Internet of Things (IoT) has improved people's lives. IoT provides users with various intelligent sorting, networked devices, and applications across different fields. Therefore, detecting anomalies in IoT devices with intelligent sorting is crucial to minimise threats and improve safety. The convolutional neural network-assisted anomaly detection (CNN-AD) method has been developed to enhance security by detecting anomalies in the IoT environment with intelligent sorting. The Anomaly detection method uses a focused event system to increase its efficiency in intelligent sorting with event grouping tasks and improve detection accuracy. The event privacy is obtained by utilising the feature selection, mapping, and normalisation to enhance security. CNN automatically extracts characteristics from data and identifies and classifies the different types of events and attacks in intelligent sorting. The performance analysis and assessments of CNN are based on detecting different classes of attacks and computation times that are significantly shorter.

Keywords: anomaly detection; CNN; convolutional neural network; classification; different attacks; privacy; security; intelligent sorting. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=142820 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdsci:v:9:y:2024:i:3/4:p:256-275

Access Statistics for this article

More articles in International Journal of Data Science from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdsci:v:9:y:2024:i:3/4:p:256-275