Automatic detection and classification of brain tumours using k-means clustering with classifiers
Narayanan Hema Rajini and
Rajaram Bhavani
International Journal of Enterprise Network Management, 2019, vol. 10, issue 1, 64-77
Abstract:
A brain tumour detection and classification system has been designed and developed. This work presents a new approach to the automated detection and classification of astrocytoma, medulloblastoma, glioma, glioblastoma multiforme and craniopharyngioma type of brain tumours based on k-means clustering and texture features, which separate brain tumour from healthy tissues in magnetic resonance images. The magnetic resonance feature image used for the tumour detection consists of T2-weighted magnetic resonance images for each axial slice through the head. The application of the proposed method for tracking tumour is demonstrated to help pathologists distinguish exactly tumour region and its type of tumour. The results are quantitatively evaluated by a human expert. The average overlap metric, average precision and the average recall between the results obtained using the proposed approach and ground truth are 0.92, 0.97 and 0.92, respectively. A classification with accuracy of 100%, 99% and 98% has been obtained by SVM, ANN and decision tree.
Keywords: magnetic resonance imaging; MRI; k-means clustering; segmentation; grey level co-occurrence matrix; GLCM; tumour. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=98103 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijenma:v:10:y:2019:i:1:p:64-77
Access Statistics for this article
More articles in International Journal of Enterprise Network Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().