Swarm intelligence-based task scheduling algorithm for load balancing in cloud system
D. Komalavalli and
T. Padma
International Journal of Enterprise Network Management, 2021, vol. 12, issue 1, 1-16
Abstract:
As on miniature devices to military applications, the cloud computing plays a vital role. Building efficient cloud management systems will lead to improve extraordinary features in the applications of cloud services. In cloud atmosphere, enormous tasks are performed simultaneously; an effectual task scheduling is very important role to get better performance of the cloud system. An assortment of cloud-based task scheduling algorithms is offered that schedule the user's task to resources for implementation. The innovation of cloud computing, conventional scheduling algorithms cannot gratify the cloud's requirements, the researchers are frustrating to modify conventional algorithms that can accomplish the cloud needs similar to rapid elasticity, resource pooling and on-demand self-service. Also, the priority becomes an important task when dealing with critical functionality systems. Real world invocations are needed to make an efficient selection in cloud services through a collection of functionally equivalent services. This research aims to detect a novel method to predict the system functionality without consuming more time and less expensive for implementation. Investigation on swarm intelligence-based task scheduling is presented. This will improve the power consumption by reducing overloads when more services opt for a single load. Experiments were carried out to test the effectiveness of the method.
Keywords: task scheduling; particle swarm optimisation; PSO; bat algorithm; swarm intelligence; cloud computing; load balancing; low power. (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=112669 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijenma:v:12:y:2021:i:1:p:1-16
Access Statistics for this article
More articles in International Journal of Enterprise Network Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().