Profile matching of online users across multiple social networks: a text mining approach
Deepesh Kumar Srivastava and
Basav Roychoudhury
International Journal of Enterprise Network Management, 2022, vol. 13, issue 1, 19-36
Abstract:
Profile matching of a person using various online social networks is a non-trivial task. Major challenges in developing a reliable and scalable matching scheme include the non-availability of the required information or having contradictory information for the same user across these networks. In this study, we propose a method that utilises the contents generated by or shared with users across their online social networks. With the help of text mining techniques, we extract the high frequency words and common high frequency words in the user's posts/tweets (content attributes). Based on experiments with real datasets, this method provides 72.5% accuracy in identity matching amongst user's profiles. Given the data, we develop classification models, and we achieved accuracy and F1 score of 72.5% and 67.0%, respectively. This study will be helpful to enhance the accuracy of the identity resolution frameworks.
Keywords: classification models; content attributes; identity matching; identity resolution; online social networks; text mining. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=122402 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijenma:v:13:y:2022:i:1:p:19-36
Access Statistics for this article
More articles in International Journal of Enterprise Network Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().