EconPapers    
Economics at your fingertips  
 

Multi-objective optimisation for the vehicle routing problem using metaheuristics

Sonu Rajak, P. Parthiban, R. Dhanalakshmi and S. Sujith

International Journal of Enterprise Network Management, 2018, vol. 9, issue 2, 117-128

Abstract: The capacitated vehicle routing problem is a combinatorial optimisation problem that determines a set of routes of minimum distance to deliver the goods, using a fleet of identical vehicles with restricted capacity. The objective of this article it to optimise the total distance required to deliver the goods and also the workload imbalance in terms of distances travelled by the vehicles and their loads. Due to the combinatorial in nature, it requires metaheuristic to solve these types of problems and this is a rapidly growing field of research. Here two metaheuristics such as ant colony optimisation (ACO) and simulated annealing (SA) are proposed and analysed for solving this multi-objective formulation of the vehicle routing problem. The results obtained from these two methods were compared and found that the ACO gives better results than the SA for the VRP.

Keywords: vehicle routing problem; VRP; K -means clustering algorithm; simulated annealing; ant colony optimisation; ACO. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=93706 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijenma:v:9:y:2018:i:2:p:117-128

Access Statistics for this article

More articles in International Journal of Enterprise Network Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijenma:v:9:y:2018:i:2:p:117-128