EconPapers    
Economics at your fingertips  
 

Low voltage current transformer defect detection method based on Hausdorff distance algorithm under charged state

Kai Sun, Xiaohui Zhai, Yanling Sun, Yan Du and Yuning Fa

International Journal of Energy Technology and Policy, 2024, vol. 19, issue 1/2, 65-85

Abstract: In order to accurately detect the defects of low-voltage current transformers, a defect detection method of low-voltage current transformers based on Hausdorff distance algorithm under charged state is proposed. In the charged state, the noise variance of the defect image of low-voltage current transformer is calculated, the grey variance in the bilateral filter function is adjusted, and the defect image of low-voltage current transformer after noise removal is obtained. The Canny edge results are calculated to obtain the distance transform map. The mask convolution processing is performed on the distance transform map to cluster the results, and then the defect characteristics of different types of low-voltage current transformers are obtained. At the same time, the Hausdorff distance algorithm and elastic graph matching are effectively combined to realise defect detection of low-voltage current transformers. The experimental results show that the proposed method can quickly and accurately detect the defects of low-voltage current transformers.

Keywords: charged state; Hausdorff distance algorithm; low voltage current transformer; defect detection. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=138539 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijetpo:v:19:y:2024:i:1/2:p:65-85

Access Statistics for this article

More articles in International Journal of Energy Technology and Policy from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijetpo:v:19:y:2024:i:1/2:p:65-85