EconPapers    
Economics at your fingertips  
 

A time series-based method for predicting electricity demand in industrial parks

Yurong Pan and Chaoyong Jia

International Journal of Energy Technology and Policy, 2025, vol. 20, issue 1/2, 95-109

Abstract: In order to accurately predict electricity demand and improve the economy and security of the power system, a time series based method for predicting electricity demand in industrial parks is proposed. Firstly, the missing values of electricity consumption data are estimated using a seasonal exponential smoothing model. Then, the missing values are supplemented and the time series is decomposed. For each decomposed part, a suitable model is selected for fitting. For long-term trends, use univariate linear regression prediction method. For seasonal changes, choose seasonal ARIMA model for modelling. For periodic changes, use Fourier analysis method for prediction. For irregular changes, combine univariate linear regression prediction method and binary linear regression prediction method for prediction. Finally, the GARCH model is introduced to test the error sequence. The experimental results show that the proposed method improves the accuracy of the prediction model and has practical application value.

Keywords: time series; industrial parks; electricity demand forecasting; seasonal ARIMA model; trend elimination method. (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=144301 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijetpo:v:20:y:2025:i:1/2:p:95-109

Access Statistics for this article

More articles in International Journal of Energy Technology and Policy from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijetpo:v:20:y:2025:i:1/2:p:95-109