Research on application potential prediction method for urban energy system based on decision tree
Gu Jiale
International Journal of Global Energy Issues, 2020, vol. 42, issue 3/4, 144-161
Abstract:
In order to overcome the problems of low accuracy and low operational efficiency of application potential prediction methods for traditional urban energy system, an application potential prediction method for urban energy system based on decision tree is proposed. The method classifies the energy system data using evidence weight model. According to the classification results, the attributes of urban energy system are classified by using spatial similarity principle, and the spatial topology, orientation and distance relationships of urban energy variables and evaluation units in the scene are extracted. The decision tree is built with the attributes of urban energy system as the sample set. The decision tree is improved by using the probability-based ranking method and Laplace transform. The application potential prediction model for urban energy system is constructed by the improved decision tree. The experimental results show that the method has high accuracy, high efficiency and reliability.
Keywords: decision tree; urban; energy system; application potential; prediction. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.inderscience.com/link.php?id=108954 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijgeni:v:42:y:2020:i:3/4:p:144-161
Access Statistics for this article
More articles in International Journal of Global Energy Issues from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().