EconPapers    
Economics at your fingertips  
 

Research on energy supply chain risk prediction based on the fuzzy C-means clustering algorithm

Tao Xiao, Tao Zhang and Ning Zhang

International Journal of Global Energy Issues, 2022, vol. 44, issue 1, 65-75

Abstract: In order to improve the ability of risk prediction, a risk prediction method of energy supply chain based on fuzzy C-means clustering algorithm is proposed. Based on the regression analysis results of risk data samples, panel data fusion is carried out to extract the correlation feature of risk panel data of energy supply chain. Using the prior information distributed detection method to construct the statistical characteristic quantity of energy supply chain risk prediction. According to the prior sample regression analysis results of risk prediction of energy supply chain, the risk characteristics of energy supply chain are extracted, and the fuzzy C-means clustering method is used to cluster the risk characteristics, and the risk prediction of energy supply chain is carried out. The simulation results show that this method has high accuracy and credibility for energy supply chain risk prediction, and improves the risk management ability of energy supply chain.

Keywords: fuzzy C-means; clustering; energy supply chain; risk prediction. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=120781 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijgeni:v:44:y:2022:i:1:p:65-75

Access Statistics for this article

More articles in International Journal of Global Energy Issues from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijgeni:v:44:y:2022:i:1:p:65-75