Energy consumption parameter detection of green energy saving building based on artificial fish swarm algorithm
Lijun Yin and
Haoran Yin
International Journal of Global Energy Issues, 2022, vol. 44, issue 5/6, 498-510
Abstract:
In order to overcome the low-detection accuracy of traditional methods, an artificial fish swarm algorithm was proposed to detect the energy consumption parameters of green and energy-saving buildings. The type of energy consumption equipment in green and energy-saving buildings is analysed, and the electricity consumption of building energy consumption equipment is taken as the building energy consumption parameter. The hierarchical clustering method was used to establish the classification model of energy consumption parameters, and the energy consumption parameters were classified and processed, and the energy consumption parameters detection model was built, and the preliminary detection results of energy consumption parameters were obtained. The artificial fish swarm algorithm was used to construct the optimisation function of building parameter detection results to obtain the optimal detection results of energy consumption parameters. Experimental results show that the accuracy of the proposed method is between 92.76% and 98.75%, and the practical application effect is good.
Keywords: artificial fish swarm algorithm; green energy saving building; energy consumption parameters; hierarchical clustering. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=125411 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijgeni:v:44:y:2022:i:5/6:p:498-510
Access Statistics for this article
More articles in International Journal of Global Energy Issues from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().