Study on multi-step prediction method of passive energy-saving building energy consumption based on energy consumption perception
Qiliang Yuan
International Journal of Global Energy Issues, 2023, vol. 45, issue 4/5, 366-382
Abstract:
Passive energy-saving buildings have problems such as low energy consumption prediction accuracy and complex prediction process. A multi-step prediction method for energy consumption of passive energy-saving buildings based on energy consumption perception is proposed. Firstly, the related thermal parameters and building parameters of passive energy-saving buildings are calculated by steady-state calculation. Secondly, the equivalent thermal parameters of building air-conditioning load, air-conditioning load equivalent thermal parameters and air-conditioning load thermal parameters are determined by means of first-order differential equations, and the envelope structure is calculated. Finally, the ultrasonic sensor is set in the energy-saving building, and the energy consumption data of each part of the building is sensed to realise multi-step prediction. The experimental results show that the fluctuation of the predicted energy consumption value of the proposed algorithm is less than 1 J, the prediction accuracy is always above 90% and the time cost is about 1.54 s.
Keywords: energy consumption perception; passive energy-saving building; multi-step prediction of energy consumption; dynamic calculation; load equivalent thermal parameters. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=132019 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijgeni:v:45:y:2023:i:4/5:p:366-382
Access Statistics for this article
More articles in International Journal of Global Energy Issues from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().