Smart city traffic evaluation system based on neural network model
Mingyue Wang
International Journal of Global Energy Issues, 2023, vol. 45, issue 6, 561-585
Abstract:
Based on the basic connotation of green transportation and reorganisation and the five-in-one theory of green transportation, the article constructs an evaluation index system for urban green transportation, proposes an evaluation model based on BP neural network, and tests it. The article verifies the efficiency and rationality of this method, determines the number of network layers, transfer function, training function, hidden layer neurons, and provides a feasible evaluation program, uses MATLAB Neural Network Toolbox (NNT) to design the calculation network, and uses sample training for simulation testing. From the results, it can be seen that the accuracy of the urban ecological transportation BP neural network evaluation model is relatively high. The training accuracy can reach 3.4*10−3 magnitude, the output accuracy can reach 10−4 magnitude, and the error of the model is within a predetermined range. The strategic measures for the development of urban ecological transportation are proposed.
Keywords: urban ecological transport; ecological transport evaluation; index system; neural network model. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=133807 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijgeni:v:45:y:2023:i:6:p:561-585
Access Statistics for this article
More articles in International Journal of Global Energy Issues from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().