Predictive data using linear regression in agricultural production
Clóvis Santos and
Carina Dorneles
International Journal of Information and Decision Sciences, 2025, vol. 17, issue 2, 150-167
Abstract:
In agribusiness some challenges are related to generating information for predictability with an acceptable safety accuracy. In this context, data management systems are usually developed to meet only the operational, legal, and regulatory requirements. The gap in functionalities regarding data science creates the opportunity to develop complementary tools such as business intelligence, data warehousing, online analytics, and others. This paper presents an approach to predict possible scenarios from historical harvested crops datasets. We conducted our proposal using a set of government data on harvests in all regions of Brazil in a historical series of 45 years. We have developed a descriptive application for predictive data analysis and information generation for forecasting scenarios in agriculture, using machine learning with a predictive algorithm implemented with linear regression. Objectively, the results show the use of real datasets to generate possible values in crops according to previous seasons.
Keywords: agribusiness; database; linear regression data extraction; machine learning. (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=146711 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijidsc:v:17:y:2025:i:2:p:150-167
Access Statistics for this article
More articles in International Journal of Information and Decision Sciences from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().